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There are five problems (I~V). For Problem I, select and answer five
out of the ten questions. Each of Problems 11~V consists of basic and
advanced problems ([A], [B]). Answer both of them. All the problems are
given first in Japanese, and then in English. The contents of the
problems are the same. You may write the answer either in Japanese or
in English.
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For each problem, use one sheet of answer paper. Write the problem number
at the top of the sheet.
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Draft sheets will not be marked.
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I

on the answer sheet clearly.

Q1. Evaluate the following quantities for the complex vector field
1
v(@)=| e |.
e—ix

(a) Squared norm, |v(#)|?.
(b) Divergence, V- v(7#).
(c) Rotation, V x v(#).

X

Here, 7 = <y) 1s a position vector in the three-dimensional space and i
z

1s the imaginary unit.

0 0 1
Q2. The matrix (0 1 O> has three eigenvectors which are orthogonal
1 0 0
1
to each other. When one of them is given as | 1 |, find the other two.
1
Q3. An n-dimensional real symmetric matrix H satisfies H2 = E (E:

unit matrix). Find all possible eigenvalues of the matrix H.

Q4. Find the general solution of the following differential equation.
d’y _dy
_ Y 7 2 — p3x
dx? 3 dx tey=e
Q5. Evaluate the following integral. Here, f(x) is an arbitrary smooth

function, §(x) is the Dirac’s delta function, and ¢ (¢ # 0) is a real

number.

foof(x)6(x2 —c?)dx

(To be continued on the next page)



Q6. Evaluate the following integral separately divided into cases that a

real number c is positive and negative. Here, i is the imaginary unit.
© eix
—dx
X —icC

Q7. A point R is far from the origin and 7 is near the origin in the

three-dimensional space. The distance between the two points |I_€ — F| 1S
expanded as follows, under the condition that r = |7| is sufficiently

smaller than R = |I_2)|

|R—#|=R

- - 2
R-7# r2 (R-7)
1+C1?+C2 F_ R4 + .-

Find the values of the coefficients ¢; and c,.

Q8. Find a real function v(x,y) that makes the following complex
function holomorphic (regular) with respect to a complex variable z = x +
y.
2xy +iv(x,y)

Here, x and y are real variables.

Q9. Functions f(x) and g(x) satisfy the following integro-differential

equation.

Fre0+ge = [ fe-ngoay
Let us define the Fourier transform of the function f(x) as
F(k) = f " f e
Express F(k) in terms of the Fourier transform G(k) of the function

g(x). Here, f' =df/dx, g’ =dg/dx and f" = d?f/dx>.

Q10. The inner product of two real functions, f(x) and g(x) both defined

in the interval —1 < x <1, is given by

1
(flg) E] () g(x)dx .
-1

(To be continued on the next page)



Orthonormalize the set of functions {1, x, x?2}.
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I1.
[A]

Q1. Show that the angular momentum of a point mass (mass M) about the
origin, J = r X p, is conserved when the moment of the force applied to the point
mass is given by N =r X F = 0. Here, r and p are the position and momentum
vectors of the point mass, respectively, and F is the force vector applied on the
point mass.

Q 2. A planet with mass m is making circular motion around a star with
mass M at a radius of r. Assume that M » m and the star is at rest. The
potential energy at infinite distance is 0. Show that the total energy of the planet
is given by

where G is the gravitational constant.

Q3. As shown in Fig. 1, a particle with mass m is connected on a wall by a
lightweight spring and is oscillating on the smooth horizontal planar surface. Let
the spring constant be k and the displacement from the equilibrium position of
the spring be x. The particle is oscillating along the x axis. Write down the
Lagrangian L of the particle and derive the equation of motion from the Euler-
Lagrange equation.

Figure 1

(To be continued on the next page)



[B]

A semicircular cylinder is made by cutting in half a cylinder with a uniform
volume density. Let the radius of the base and height of the cylinder be a and h,
respectively. As shown in Fig.2, the semicircular cylinder is put on a horizontal
planar surface and released at rest. Let the initial angle between the cutting surface
and the horizontal plane be 6,. Assume that the semicircular cylinder moves
without slipping. Let the center of mass of the original cylinder be O, that of the
semicircular cylinder be G. And the vertical line from O intersects the planar
surface at point P.

Q1. Show that the length of OG is 4a/3m.

Q2. Let the mass of the semicircular cylinder be M. Show that the moment of
inertia about an axis which passes through G and is perpendicular to the base of
the semicircular cylinder is given by

= (i 2e)em

Q3. Let the angle between the cut surface of the semicircular cylinder and the
horizontal plane at time t be 6(t). Express the moment of inertia, I, about an
axis which passes through P and is perpendicular to the base of the semicircular
cylinder as a function of .

Q4. Let the gravitational acceleration be g. Express the angular velocity 8 of
the semicircular cylinder using a,g,6 and 6,.

Q5. Consider the small-amplitude oscillation (]6,| «< 1) of the semicircular

cylinder around the equilibrium position (6 = 0). Write the period of the
oscillation, T, using a and g.

(To be continued on the next page)



Figure 2
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[11

In the following, let i = h/(27), where h is the Planck constant. Answer the following
questions [A] and [B].

Al

Q1. In a general quantum mechanical system, the Hamiltonian is given as a Hermitian
operator. By using the hermiticity of the Hamiltonian, show that all eigenvalues of

the Hamiltonian are real numbers.
Q2. Consider the momentum operator p and the coordinate (position) operator Z in one
dimension, which satisfy [p,z] = —ih. Write down the actions of p and & onto a

wave function ¢(z) in the position representation.

Q3. For the angular momentum operators J= (jl, jQ, jg), write down the commutation

relations between jl, jg and j3.

(To be continued on the next page)



Bl

In the 3-dimensional space with coordinates (1, 2, z3), the Hamiltonian of an isotropic

harmonic oscillator in the position representation is given by

- [ 0\ mw? 9
= = m 2 () + %5 2t 0

Here, m and w are the mass and the angular frequency of the particle, respectively. For

this Hamiltonian, consider the eigenvalue equation,
Hy = By, (2)

where 1 = ¥(x1, 29, x3) is a wave function of an eigenstate. Answer the following ques-

tions.

Q1. By putting ¢(x1, x9, 3) = n1(x1)n2(22)n3(x3), the variables in eq. (2) can be sepa-
rated. Then, show that n;(x;)(i = 1,2, 3) satisfies the following equation,

1 .
hw (&I&i + 2) ni(xi) = EVni(z;).

Here, E® is the energy eigenvalue of the motion in the z; direction satisfying

E® + E® 4+ EG) = E. The operator @; is defined by

G (O e
@i = 2mw \ 0x; hzZ

and aj stands for the Hermitian conjugate of a;.

Q2. By using the operator a; defined in Q1, we define a new operator N; = dj&i. Then,
compute [a;, al], [N;, ;] and [N;, al].

) (et

Q3. By using the property that the operator N; = &Zdi has only non-negative eigenvalues,
find the wave function vy and the energy Ej of the ground state of the Hamiltonian

(1). It is not necessary to normalize the wave function.

Q4. By using the results obtained in Q2, find the energy eigenvalue F,, and the degen-

eracy of the n-th excited states of the Hamiltonian (1).

Next, consider a new Hamiltonian H’, which is obtained by adding the following pertur-

(To be continued on the next page)



bative term to the Hamiltonian (1),
H = H + ex.

Here, € is a very small positive coefficient such that the second or higher powers of € shall

be neglected in the following problems.

Q5. Evaluate the energy of the ground state of H’. If necessary, use the followin
g

formulae of Gaussian integrals,

° 2n)!
ey L Cl L 0,n=0,1,2,-
/_OO v \/;n!(4a)” (@>0,n=0,1,2,--)

Q6. Explain how the degeneracies of excited states of H’ are different from those of H.
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(a) 4L > CR?
(b) 4L = CR?
(c) 4L < CR?
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[A]

A battery with electromotive force ¢, a resistance R, and a coil with self-inductance L are
connected as shown in Figure 1. At time ¢ = 0, the switch S is connected to A. Answer

the following questions.

Q1. Show the first-order differential equation that determines the electric current I which
flows through the circuit.

Q2. For p =5V, R=100 €2, and L = 1 H, plot the electric current I as a function of
time.

Q3. After a long time has passed, the switch S is changed to B from A. Explain the time
dependence of the electric current I using ¢, R, and L.

B 'y (W G

°B

Figure 1

(To be continued on the next page)



B

A capacitor with electrostatic capacitance C, a resistance R, and a coil with self-inductance
L are connected as shown in Figure 2. After the capacitor is charged, the switch S is closed.
At time ¢, the electric current through the circuit is given by I, and the capacitor holds
the electric charge +@Q). Answer the following questions.

QL.

Q2.

Q3.

Q4.

Suppose that the capacitor is composed of two thin, parallel, rectangular conducting
plates of cross-sectional area S which are separated by a distance d. A dielectric
constant in the capacitor is given by e. Express the electrostatic capacitance of the
capacitor C' and the electric field energy Ues using of @), S, d, and e. Here, d is
very small and the disorder of the electric field at the edge of conducting plates is
negligible.

Suppose that the coil is a solenoid coil with cross-sectional area S’, length d’, and
the number of turns per unit length n. A magnetic permeability in the solenoid coil
is given by u. Express the self-inductance of the solenoid L and the magnetic field
energy Uy, using of I, S, d’, n, and u. Here, d’ is very large and the disorder of the
magnetic field at the edge of solenoid is negligible.

Derive a relation between the electromagnetic energy Uqp, for the capacitor C' and
coil L, and the Joule heat Wk for the resistance R, and discuss the physical meaning.

Calculate the time dependence of the electric current I under the following condi-
tions. Then, plot and explain the behaviors.

(a) 4L > CR?

(b) 4L = CR?

(c) 4L < CR?

Q

Figure 2
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v

Answer the following questions [A] and [B]. Let the Boltzmann constant be k.
[A]

Q1. Write down the relation between the entropy S and the number of microscopic
states W in the microcanonical distribution.

Q2. Write down the relation among the partition function (sum over states) Z, the
Helmholtz free energy F' and the temperature 7' in the canonical distribution.

Q3. Answer whether each of the state quantities listed below is intensive or exten-
sive.

chemical potential, pressure, entropy, volume, temperature, number of molecule

(To be continued on the next page)
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Consider an ideal gas consisting of N independent diatomic molecules. Suppose that
the gas is in thermal equilibrium at the temperature 7. Let us adopt a rigid rotator
model to the molecule. Let I be the moment of inertia around a line perpendicular
to the axis and through the center of mass, h be the Planck constant (h = h/27),
and J be the rotational quantum number. The rotational energy eigenvalue F; and
its degeneracy W are given as follows:

72

EJZEJ(J+1), W;=2J4+1 (J=0,1,2,...).

From Q1 to Q3, neglect all the degrees of freedom except for the rotational motion.
Q1. Write down the partition function of a single molecule, and that of N molecules.

Q2. Suppose that the temperature is low (KT < h?/2I) and only the states J = 0, 1
participate in the rotation. Find the thermal average of rotational energy per

molecule, and the heat capacity.

Q3. Suppose that the temperature is high (kT > h%/2I) and each term in the par-
tition function varies smoothly with J, and hence the sum can be replaced with
the integration. Find the thermal average of rotational energy per molecule,

and the heat capacity.

Let us hereafter consider the nuclear spin in addition to the rotational motion. Neglect
any electronic-state effects. Suppose that the molecule consists of two nuclei of the
same kind and both have spin 1/2. Since the molecule is a fermion system, the Pauli
principle requires the wave function ¥(1,2), where 1,2 denote the nuclear coordinates
including the spin coordinates, to be antisymmetric with respect to the exchange of

the nuclear coordinates. Namely,
U(2,1) = —V(1,2).

U is given by the product of the spin function ¢, and the rotational wave function

6.

(To be continued on the next page)



¢ satisfies the following relationship with respect to the nuclear exchange:

6+(1,2) (S=1)
¢s(27 1) = { —¢s(172) (S = 0)7

where S is the total spin quantum number. ¢, with the rotational quantum number

J is transformed as below:
¢.(2,1) = (-1)" - ¢,(1,2) (J=0,1,2,...).
Answer the following questions.

Q4. Find the value of J allowed for the state S = 0. And find the value of J allowed
for the state S' = 1.

Q5. Find the partition functions for S = 0 and S = 1. Evaluate the fraction of the
molecule with S =0 at T"— 0.
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