sPHENIX upgrade at mid-rapidity

ShinIchi Esumi
Inst. of Physics, Univ. of Tsukuba

contents:

• Hadrons
• Electrons
• Photons
• Jets

Workshop on:
“Future Directions in High Energy QCD”
20-22/Oct/2011
Nishina Hall, Riken, Japan
sPHENIX & ePHENIX
TOF vs $1/p$ (with ACC veto)

Aerogel Cherenkov Counter
Thermal / chemical freeze-out properties from PIDed spectra and ratios
Partonic and hadronic expansion / collectivity from PIDed v_2
Advanced MRPC

- Advanced MRPC
- 24 gas gaps
- 160 micron width
- Time resolution [ps]
 - Time resolution of MRPC
 - Time difference between MRPC1 and MRPC2

Cosmic ray

- Cosmic rays 12.5 kV
 - Time resolution $\sigma = 35.3$ ps
 - Time resolution $\sigma = 24.9$ ps

- 12.5 kV T10 test beam
 - Time resolution $\sigma = 22.35$ ps
 - Time resolution $\sigma = 22.35/\sqrt{2} = 15.8$ ps

ASICs for fast timing

- Will mount NINO ASICs as close to the pick up pads as possible
- Read out both ends of strip
- Compared to 10 gap (250 micron) ALICE TOF expect
- Intrinsic jitter decrease from 20 ps to 9 ps (more primary ionising clusters - faster electron velocity in avalanche)
- Rise time to decrease by factor 2 (faster electron velocity in avalanche)
- Narrower charge spectrum further displaced from zero (slewing corrections easier)
FAST mRPC TOF for PID from Mickey Chiu

- Full coverage hadron PID that works in heavy ion collisions, even at forward rapidities (most other technologies fail at high multiplicities). Very large acceptance.
- Despite small size of sPHENIX, comparable performance to current TOF, but with full acceptance. Performance scales with distance, so larger sPHENIX is better.
- With dE/dx measurement, will have PID from very low to high p_T, and eID down to low p_T (under study what dE/dx would be required).
- Physics: 1. Critical point search/study 2. Onset of deconfinement 3. PID study of jet fragments (what happens to lost energy?) 4. Quantitative tests of 3D hydro 5. Transverse spin studies (OFF×Transversity, $\pi/K/p/\Lambda A_N$) 6. Λ spin transfer, etc…
Beam Energy Scan Program from STAR experiment

- net-proton distribution
- n-quark scaling of v_2
(Amazing) similarity between RHIC and LHC (v_2 and R_{AA})
Small deviations in \((m_T-m_0)/n_q\) scaled \(v_2\)

Pb+Pb 2.76TeV

Au+Au 200GeV

Au+Au 39GeV

- Roughly \((m_T-m_0)/n_q\) scaled for all energies
- Larger \(p_T\) shift for heavier particles
- Radial flow increases with energy

M. Krzewicki, QM11
Geometrical source anisotropy via HBT measurement at the end of freeze-out

It might be different from the v_2-v_4 relation

T. Niida, WPCF2011, 20/Sep/2011

Future Directions in High Energy QCD, 20/Oct/2011, Riken

ShinIchi Esumi, Univ. of Tsukuba
Ring-Imaging Cherenkov Detector

E/p ratio: $1.1 \text{GeV/c} < p < 1.2 \text{GeV/c}$
Charm suppression and flow from single electrons

Thermal photon spectra from electron-pairs (γ^*)
Direct photon R_{AA}

Prompt γ dominance:
- no suppression and
- small v_2 at high p_T

Large v_2 for thermal photon from combined real and virtual γ measurements
Electron-pair mass spectra in p+p / Au+Au
Hadron Blind Detector

Pairs in Central Arms

Pairs matched to HBD

Pairs after HBD rejection

Future Directions in High Energy QCD, 20/Oct/2011, Riken

ShinIchi Esumi, Univ. of Tsukuba
Charged hadrons and jets
High p_T photons and electrons

\[\Delta p/p = 0.007 + 0.0015p \]
J/Psi R_{AA} and v_2

different J/ψ $R_{AA}(p_T)$ dependence between RHIC(↑) and LHC(↓)
Jet energy asymmetry
+
Out-of-Cone radiation

ΔR > 0.8

ΔR < 0.8

arXiv:1102.1957 [nucl-ex]
Fragmentation function with direct photon trigger
\(\gamma, \text{Jet, } \pi^0 \) - hadron correlation

Comparisons are the most important!

Closer and closer to the initial parton energy

More and more surface bias given by energy loss

Future Directions in High Energy QCD, 20/Oct/2011, Riken
Shinlchi Esumi, Univ. of Tsukuba
v_2 in p+p \leftrightarrow v_3 in A+A
Higher harmonic event anisotropy and azimuthal correlation
\[\phi_s = [-2,-1] \pi/8 \]
\[\phi_s = [1,2] \pi/8 \]
\[\phi_s = [2,3] \pi/8 \]
\[\phi_s = [3,4] \pi/8 \]

200GeV Au+Au -> h-h (run7)
(\(p_T^{\text{Trig}} = 2 \sim 4 \text{GeV/c} , p_T^{\text{Asso}} = 1 \sim 2 \text{GeV/c} \))
mid-central : 20-50%

\(\Delta \phi = \phi_{\text{Asso.}} - \phi_{\text{Trig.}} \) (rad)

PHENIX preliminary
the same data in polar plots (R.P. is x axis) --- associate distribution for a given trigger direction ---

200GeV Au+Au -> h-h
($p_T^{Trig}=2$~$4\text{GeV}/c$, $p_T^{Asso}=1$~$2\text{GeV}/c$)

out-of-plane trigger $3\pi/8 < |\phi_{Trig} - \phi_{R.P.}| < \pi/2$

in-plane trigger $|\phi_{Trig} - \phi_{R.P.}| < \pi/8$

averaged over all trigger angles
heavy-flavor (b/c tagged) electron identified open heavy-flavor meson multi-hadron/jet correlations with R.P. / large η_{Trig}
higher harmonic event anisotropy
Summary

• Calorimetric detector for jets, electrons and photons at high p_T
• How about low p_T electrons, photons and identified hadrons?
• What about fluctuation/correlation variables with particle identification using a large acceptance detector…