Azimuthal angle dependence of HBT radii in Au+Au collisions at RHIC-PHENIX

Takafumi Niida for the PHENIX Collaboration
University of Tsukuba

The 12th Asia Pacific Physics Conference
Quark Gluon Plasma (QGP)

- State at a few µ-seconds after Big Bang
- Quarks and gluons are reconfined from hadrons

QGP will be created at extreme temperature and energy density

Relativistic heavy ion collisions is a unique way to study the QGP

from BNL web site

http://www.scientificamerican.com/
Space-time extent at freeze-out reflects the properties of system evolution, such as the phase transition, hydrodynamic expansion and hadron rescattering etc.

HBT interferometry is a powerful tool to study the space-time evolution in Heavy Ion collisions.
HBT Interferometry

- R. Hanbury Brown and R. Twiss
 - In 1956, the angular diameter of Sirius was measured.
- Goldhaber et al.
 - In 1960, correlation among identical pions in p+p collision was observed.
- Quantum interference between two identical particles

Wave function for 2 bosons (fermions):
\[\Psi_{12} = \frac{1}{\sqrt{2}} [\Psi(x_1, p_1)\Psi(x_2, p_2) \pm \Psi(x_2, p_1)\Psi(x_1, p_2)] \]

Spatial distribution \(\rho \):
\[\rho(r) \sim \exp(-\frac{r^2}{2R^2}) \]

\[C_2 = \frac{P(p_1, p_2)}{P(p_1)P(p_2)} \approx 1 + |\tilde{\rho}(q)|^2 = 1 + \exp(-R^2 q^2) \]
Azimuthal angle dependence

- HBT w.r.t Reaction Plane give us source shape at freeze-out.
 - R.P defined by beam axis and vector between centers of colliding nuclei
- Final eccentricity is determined by initial eccentricity, velocity profile and expansion time etc.
 - Initial anisotropy causes momentum anisotropy

\[R_{\text{in-plane}} > R_{\text{out-of-plane}} \]

\[R_{\text{in-plane}} = R_{\text{out-of-plane}} \]
Higher Harmonic Flow and Event Plane

- Initial density fluctuations cause higher harmonic flow v_n
- Azimuthal distribution of emitted particles:

\[
\frac{dN}{d\phi} \propto 1 + 2v_2\cos(2(\phi - \Psi_2)) + 2v_3\cos(3(\phi - \Psi_3)) + 2v_4\cos(4(\phi - \Psi_4))
\]

v_n: strength of higher harmonic flow
Ψ_n: higher harmonic Event plane
ϕ: azimuthal angle of emitted particles

What is final shape?
3D HBT radii

“Out-Side-Long” frame

- Bertsch-Pratt parameterization
- Longitudinal Center of Mass System \((p_{z1}=p_{z2}) \)

\[C_2 = 1 + \lambda G \]
\[G = \exp\left(-R^2 q^2 \right) \]
\[= \exp\left(-R_{\text{side}}^2 q_{\text{side}}^2 - R_{\text{out}}^2 q_{\text{out}}^2 - R_{\text{long}}^2 q_{\text{long}}^2 - \Delta \tau^2 q_0^2 \right) \]
\[\approx \exp\left(-R_{\text{side}}^2 q_{\text{side}}^2 - \left(R_{\text{out}}^2 + \beta T \Delta \tau^2 \right) q_{\text{out}}^2 - R_{\text{long}}^2 q_{\text{long}}^2 \right) \]
\[= R_{\text{out}}^2 \]
\[G = \exp\left(-R_{\text{side}}^2 q_{\text{side}}^2 - R_{\text{out}}^2 q_{\text{out}}^2 - R_{\text{long}}^2 q_{\text{long}}^2 - 2R_{\text{os}} q_{\text{side}} q_{\text{out}} \right) \]

\(\lambda \) : chaoticity
\(R_{\text{side}} \) : transverse HBT radius
\(R_{\text{out}} \) : transverse HBT radius + \(\Delta \tau \) (emission duration)
\(R_{\text{long}} \) : longitudinal HBT radius
\(R_{\text{os}} \) : cross term for \(\phi \)-dependent analysis
HBT radii w.r.t 2nd-order event plane

\[R_{s,n} = \langle R_s^2(\Delta \phi) \cos(n\Delta \phi) \rangle \]

\[\varepsilon_{\text{final}} = 2R_{s,2}^2/R_{s,0}^2 \]

- \(\varepsilon_{\text{final}} \approx \varepsilon_{\text{initial}}/2 \) for pion
 - expansion to in-plane, but still elliptical at freeze-out
 - consistent with STAR experiment
- \(\varepsilon_{\text{final}} \approx \varepsilon_{\text{initial}} \) for kaon
 - emission region we’re looking at is different?
m_T dependence

- HBT does not measure the whole size but the emission region for expanding source
 - HBT radii depend on pair transverse momentum mass m_T
 - Kaon has higher m_T than pion
- R_{s,2}^2/R_{s,0}^2 shows difference even at the same m_T in 20-60%
 - m_T scaling works well for average radius of π/K (PRL103.142301(2009))
 - Different freeze-out dynamics for both species?

Diagram:

- Graph showing 2R_{s,2}^2/R_{s,0}^2 and -2R_{0,2}^2/R_{0,0} vs. \langle m_T \rangle [GeV/c]
- PHENIX Preliminary: Au+Au 200GeV

\[m_T = \sqrt{k_T^2 + m^2} \]
HBT radii w.r.t 3rd-order event plane

- **R_{out}** clearly shows a finite oscillation w.r.t Ψ_3 in most central event
 - Strength w.r.t Ψ_3 is comparable to w.r.t Ψ_2
- **What make this R_{ϕ} oscillation?**
 - Triangular spatial shape?
 - Triangular flow?
 - v_3 is comparable to v_2 in most central
 - Emission duration?

PHENIX

preliminary

Au+Au 200GeV 0-10%

- $\pi^+\pi^+\pi^-\pi^-$
 - $w.r.t \Psi_2$
 - $w.r.t \Psi_3$

Average of radii is set to “10” or “5” for w.r.t Ψ_2 and w.r.t $\Psi_3

PRL.107.252301
Centrality dependence of relative amplitudes

- Oscillation of R_s shows is almost zero within systematic error
 ✶ Slightly negative value in peripheral ?
- R_o has finite oscillation except peripheral event
Possible explanation of R_\circ oscillation

- HBT w.r.t Ψ_3 with toy model have been reported in arXiv:1306.1485[nucl-ex] (2013)
 - assuming Gaussian source with triangular geometric deformation and triangular flow

triangular source
- without flow anisotropy
- spherical source
- with flow anisotropy

- Close to “flow dominated” case?
- Need to check the k_T dependence to constraint ε_3/β_3
Summary

- Azimuthal angle dependence of HBT radii with respect to 2nd- and 3rd-order event plane have been presented.
 - Final eccentricity of kaons shows higher value than that of pion even at the same \(m_T \)
 - Oscillation of \(R_o \) w.r.t \(\Psi_3 \) have been observed in most central event, while \(R_s \) doesn't show any signal beyond systematic error
 - \(R_o \) oscillation may be explained by triangular flow

Outlook

- \(k_T \) dependence of oscillation amplitudes w.r.t \(\Psi_3 \) will be measured, which will provides us information on the relative magnitude of geometrical and flow anisotropy
Back up
PHENIX Detectors

✫ Particle Identification by EMCal
✦ π/K separation up to ~1GeV
✫ Centrality by Beam-Beam Counter
✦ measure charge sum from participants
✫ Event plane Ψ_n determined by RxNP
✦ $\text{Res}(\Psi_2) \sim 0.75$, $\text{Res}(\Psi_3) \sim 0.32$

Reaction Plane Detector (RxNP)

24 scintillator segments

beam axis

$\Psi_n = \frac{1}{n} \tan^{-1} \left(\frac{\sum w_i \cos(n\phi_i)}{\sum w_i \sin(n\phi_i)} \right)$

$\text{Res}(\Psi_n) = \langle \cos n(\Psi_n(\text{meas}) - \Psi_n(\text{true})) \rangle$

Residential Energy Distribution

- n=2 RXN
- n=3 RXN
- n=4 RXN
- n=2 MPC
- n=3 MPC
PHENIX Detectors

\[C_2 = \frac{R(q)}{M(q)} \]

R(q), M(q): relative momentum dist. for real and mixed pairs

** \(\gg \) ** PID by EMC&TOF

- charged \(\pi/K \) are selected

** \(\star \) ** \(\Psi_n \) by forward detector RXN
Track Reconstruction

- Drift Chamber
 - Momentum determination
 - $p_T \sim \frac{K}{\alpha}$
 - K: field integral
 - α: incident angle

- Pad Chamber (PC1)
 - Associate DC tracks with hit positions on PC1
 - p_z is determined

- Outer detectors (PC3, TOF, EMCaI)
 - Extend the tracks to outer detectors
Particle IDentification

- **EMC-PbSc is used.**
 - ♦ timing resolution ~ 600 ps
- **Time-Of-Flight method**

 \[
 m^2 = p^2 \left(\left(\frac{ct}{L} \right)^2 - 1 \right)
 \]

 \(p\): momentum \(L\): flight path length \(t\): time of flight

- **Charged \(\pi/\text{K}\) within 2\(\sigma\)**
 - ♦ \(\pi/\text{K}\) separation up to \(~1\) GeV/c
 - ♦ \(\text{K}/\rho\) separation up to \(~1.6\) GeV/c
Correlation Function

- Experimental Correlation Function C_2 is defined as:
 - $R(q)$: Real pairs at the same event.
 - $M(q)$: Mixed pairs selected from different events.

 Event mixing was performed using events with similar z-vertex, centrality, E.P.

 $C_2 = \frac{R(q)}{M(q)}$

 $q = p_1 - p_2$

 - Real pairs include HBT effects, Coulomb interaction and detector inefficient effect.
 - Mixed pairs doesn’t include HBT and Coulomb effects.

 $C_2 = R/M$

relative momentum dist.

HBT effect
Coulomb repulsion
m_T dependence of $\varepsilon_{\text{final}}$

- $\varepsilon_{\text{final}}$ of pions increases with m_T in most/mid-central collisions
- There is still difference between π/K for mid-central collisions even in same m_T
- Indicates sooner freeze-out time of K than π?
Centrality dependence of v_3 and ε_3

- Weak centrality dependence of v_3
- Initial ε_3 has centrality dependence
- Final ε_3 has any centrality dependence?
Azimuthal HBT radii w.r.t Ψ_3

- R_{side} is almost flat
- R_{out} have a oscillation in most central collisions

PHENIX Preliminary
Au+Au 200GeV $\pi^+\pi^+$ & $\pi^0\pi^-$

- 0-10%
- 10-20%
- 20-30%
- 30-60%
Image of initial/final source shape
Charged hadron v_n at PHENIX

- v_2 increases with increasing centrality, but v_3 doesn’t
- v_3 is comparable to v_2 in 0-10%
- v_4 has similar dependence to v_2
The past HBT Results for charged pions and kaons

- Centrality / m_T dependence have been measured for pions and kaons
 - higher transverse mass m_T for kaons leads to smaller radii compared to pions
 - pion $<m_T> \sim 0.47$ GeV/c
 - kaon $<m_T> \sim 0.89$ GeV/c
 - m_T scaling works well
Azimuthal HBT radii for pions

- Observed oscillation for R_{side}, R_{out}, R_{os}
- Rout in 0-10% has oscillation
 - Different emission duration between in-plane and out-of-plane?

![Graphs showing oscillations in R_{side}, R_{out}, R_{long}, and R_{os}](image-url)
Azimuthal HBT radii for kaons

- Observed oscillation for R_{side}, R_{out}, R_{os}
- Final eccentricity is defined as $\varepsilon_{\text{final}} = 2R_{s,2} / R_{s,0}$
 \[R_{s,n}^2 = \langle R_{s,n}^2 (\Delta \phi) \cos(n \Delta \phi) \rangle \]
 PRC70, 044907 (2004)