Experimental status of heavy-ion collisions at LHC
Outline

1. Collectivity in p-Pb vs. PbPb
2. Energy loss (jet, γ-jet, heavy quarks)
3. Melting temperature, quark recombination via quarkonia production
4. Summary

*Note: This talk is not intend to a complete review of LHC HI results, but rather to show selected recent results (from QM14 w/ personal bias), try to summarize the current understanding of LHC HIC.
1. Collectivity (pPb and PbPb)

Highest pPb multiplicity ~ 55-60% Pb-Pb.
• ALICE preliminary results of p_T spectra in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

• Shown here are for π, K, p, K^0, Λ, Ξ, Ω

• Fitted by the blast wave model (global fit).
T_{kin} vs. $\langle \beta_T \rangle$ in blast wave

- Coherent fit for π, K, p, K^0, Λ, Ξ, Ω for different centrality (pp, pPb, PbPb)

- At same N_{ch}, $\langle \beta_T \rangle$ larger in p-Pb than in that in Pb-Pb, but also, $\langle \beta_T \rangle$ similarly large in pp and p-Pb (at same N_{ch}) with large T.

- Strong correlation between T and $\langle \beta_T \rangle$.
Similar large radii (R_{long} up to 5 fm) in pPb & PbPb at the same N_{ch}. Scaling with multiplicity and k_T (dynamical behavior).
Di-Hadron Correlations in p-p & p-Pb

- First observation of ridge structure in high multiplicity p-p (CMS).
- Also confirmed in p-Pb high multiplicity events.
- Alway side ridge structure is observed in high multiplicity p-Pb.

p-p (N \geq 110)

CMS \(N \geq 110, 1.0\text{GeV}/c < p_T < 3.0\text{GeV}/c \)

\[
\Delta \eta = 5.02 \text{ TeV}, N_{\text{trk}} \geq 110
\]

\(1 < p_T < 3 \text{ GeV}/c \)

p-Pb (N \geq 110)

CMS p+Pb \(\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} \)

\[
1 < p_T < 3 \text{ GeV}/c
\]

ATLAS \(\int L = 1 \mu\text{b}^{-1} \)

\[
0.5 < p_T < 4 \text{ GeV}
\]

- CMS, JHEP 1009 (2010) 91
- CMS, PLB 718 (2012) 795
- ATLAS, PRL 110, 182302 (2013)
Double ridge structure in p-Pb

- Extract double ridge structure by subtracting p-p jet like distribution in p-Pb (60-100%) from central p-Pb (0-20%).
- Confirmed that near and away side ridges are almost same structure, a la "Double ridge".
- Strong correlation between near and away side yields, suggesting the same origin.
Multi-particle correlations (PbPb vs. pPb)

- Observed non-flow effect in $v_2\{2\}$.
- v_2 stays large when calculated with multi-particles.
- $v_2\{4\}=v_2\{6\}=v_2\{8\}=v_2\{LYZ\}$ within 10%
- Suggest collectivity in p-Pb.
1. Adjust p+Pb p_T scale by 4/5 to account for difference in $<p_T>$ (Teany et al.) for ATLAS data.

2. Pb+Pb v_2 and v_4 multiplied by 0.66 to match p+Pb

- Compare p+Pb and Pb+Pb
- Good agreement between p-Pb and Pb-Pb when including p_T, v_2, v_4 rescaling
- v_2 for π, K, p (ALICE) and K_{s0}, Λ (CMS)
- Very similar behaviour for v_2 in Pb-Pb, i.e, Mass ordering & crossing
Quark number scaling test in pPb

Quark number scaling of v_2.

- Comparison in p-Pb and Pb-Pb in same N_{ch}.

- Seems better in pPb.
Remarkable similarity in v_3 as a function of multiplicity in p-Pb and Pb-Pb
Now on PbPb;
towards precession measurements of identified particle v_2
- ALICE data of v_2 measured for π, K, K^0, p, ϕ, Λ, Ξ, Ω

- Mass ordering ($p_T < 2.5$ GeV/c).
Number of quark constituent scaling violated by ~20% in particular in central collisions ($p_T/n_q > 1$ GeV/c)
Closer look at ϕ meson v_2 (Pb-Pb)

- v_2 at low p_T follows mass ordering
- v_2 at high p_T close to p in central, and close to π in mid-central

- In central collisions p and ϕ p_T spectra have similar shape up to ~ 4 GeV/c, as expected from radial flow.

- Indicated that mass (and not number of constituent quarks) is main driver of v_2 and spectra in central only?

Pb-Pb: p/ϕ ratio vs p_T

\begin{align*}
\text{Pb-Pb: } p/\phi \text{ ratio vs } p_T \\
80-90\% & \quad 0-10\% \\
10-20\% & \quad 30-40\%
\end{align*}
2. Energy loss
1) Large energy imbalance is observed in central Pb-Pb.

\[A_J = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}} \]

\(p_{T,1} \): leading jet
\(p_{T,2} \): sub-leading jet

2) Large \(A_J \): low momentum particle (< 4 GeV/c) emitted at large angle on away side.
\(\gamma \)-jet: jet tomography

- \(\gamma \) as a calibrated probe of jet energy.
- Significant change in \(R_{J\gamma} \), \(<x_{J\gamma}> \) compared to PYTHIA and pp.

\[
< x_{J\gamma} > = \frac{p_T^{jet}}{p_T^\gamma}
\]

\(R_{J\gamma} \): fraction of photons with jet partner

γ-jet in pPb, PbPb

- $R_{J\gamma} = \text{fraction of photons with a jet of } p_{T, \text{jet}} > 30 \text{ GeV}$
- Jet energy is essentially unmodified in pPb.
Jet spectra in Pb-Pb, p-p

pp 2.76 TeV

Pb-Pb 2.76 TeV

- ATLAS: in different y and centrality, up to $p_T < 400$ GeV
Jet R_{AA}: centrality and y dep.

- Jet R_{AA} vs p_T and y.
- Factor of ~ 2 suppression up to jet p_T of 400 GeV.
- Slow increase with increasing jet p_T, may vary with centrality.
Jet R_{AA}: centrality and y dep.

- R_{AA} monotonically decreases vs N_{part}
- $R_{AA} \approx 0.8$ in 60-80%,
- $R_{AA} \approx 0.4$ in 0-1% at lower jet p_T
- No significant dependence on rapidity observed
- Even though both spectrum shape and q/g fractions vary with y
Jet Fragmentation in PbPb

- Ratios of $D(z)$ vs centrality, using baseline peripheral (60-80%)
- In addition to features previously seen (modification of small z (low p_T)), indication of an enhancement at large z
Jet Fragmentation in PbPb

- Enhancement at large z (or p_T) clearer for smaller jet radii ($R = 0.2, 0.3$).
D mesons R_{AA} and v_2

- D mesons are also strongly suppressed.
- **significant non-zero v_2 for D.**
Charm vs. Bottom

- R_{AA} for charmed meson (D) vs. bottom meson (J/ψ from B decay).
- First indication of a flavor dependence of R_{AA}.
- $R_{AA}^B > R_{AA}^D$
Now on pPb;
Jet/heavy q in pPb
Unmodified for charged hadron and jet in pPb.
Jets coming from b (second vertex)
As suppressed as incl. jets ($R_{AA} \approx 0.5$)
Not suppressed in pPb ($R_{pA} \approx 1$)
Jet in pPb, R_{AA}, y dep.

- Inclusive jet in pPb, no y dependence seen
ATLAS observes a strong variation in jet yield with centrality at high p_T or forward rapidities.
Jet R_{pPb} (centrality dep.)

- If inclusive $R_{pPb} \sim 1$ and R_{CP} shows such effects, necessarily;
 - Peripheral enhancement
 - Central suppression

Some explanations:
- Geometrical effect (proton special configuration, protons with larger x partons have a reduced soft cross section)
- It is still unclear for this effect...
B meson in p-Pb

$B^+ \rightarrow J/\psi K^+$, $B^0 \rightarrow J/\psi K^*$, $B_s \rightarrow J/\psi \phi$

- **Showing no modification** (large uncertainty, incl. the FONLL ref)
RpPb for heavy quark

- Showing no modification for D, $b(\rightarrow c)\rightarrow e$, $c,b \rightarrow \mu$

\[\text{ALICE Preliminary} \]

\[b(\rightarrow c)\rightarrow e \]

\[p-Pb, \sqrt{s_{_{NN}}} = 5.02 \text{ TeV}, -1.06 < y_{_{CMS}} < 0.14 \]

\[\text{ALICE Preliminary} \]

\[b \rightarrow \mu \]

\[p-Pb, \sqrt{s_{_{NN}}} = 5.02 \text{ TeV}, \mu^- \rightarrow c,b \text{ decays} \]

\[2.5 < y_{_{CMS}} < 3.54 \]

\[\text{ALICE Preliminary} \]
3. Melting temperature for quarkonia, and recombination
Dissociation temperature

Melting excited Υ states
- Suppression of ground state $\Upsilon(1S)$, and excited states $\Upsilon(2S)$ and $\Upsilon(3S)$.
- Consistent with the sequential melting scenario, $\Upsilon(3S) > \Upsilon(2S) > \Upsilon(1S)$.

Excited states in pPb: less suppressed than in PbPb

Excited/ground state ratio appears to vary w.r.t. the pPb and pp event multiplicity (at mid-rapidity)
J/ψ (color screening vs. regeneration)

- J/ψ measured at mid-rapidity $|y| < 0.9$, by e^+e^- at LHC.
- Compared to RHIC mid-rapidity data.
- Significant larger R_{AA} than those at RHIC.
J/ψ measured at forward-rapidity 2.5 < y < 4, by μ⁺μ⁻ at LHC.

Compared to RHIC forward data.

Significant larger R_{AA} than those at RHIC.

Suppression is stronger than that at mid-rap.
J/ψ (color screening vs. regeneration)

- J/ψ R_{AA} is enhanced at low p_T.
- Compatible with models including regeneration.
• \(J/\psi \) produced via regeneration of thermal de-confined c-quarks should show a non zero \(v_2 \).

• **Data:** Hint of non-zero \(v_2 \).

• Consistent with the transport model with regeneration.
Summary

- **p-Pb**
 - High multi. events: collectivity, similar to those in Pb-Pb, but not same.
 - Inclusive hard probes (jet, γ-jet, heavy q) do not show modification.
 - Indication of centrality dep. of jet yields in high p_T (ATLAS).

- **Pb-Pb**
 - ϕ: mass effect dominant in central only?
 - Stronger suppression for D than that for B.
 - J/psi: importance of regeneration of cc-bar, non-zero v_2.
Questions to be answered in Run-1/2

1. What is the driving force of collectivity in p-Pb and p-p high multiplicity events?
 - Multi-parton int. is the only cause?
 - Role of CGC?

2. Medium response to jet.
 - Measurements of hard + soft interaction, i.e. soft observables w/ jet axis.

 - di-jet, γ-jet, h(π⁺⁻)-jet, correlations etc. w.r.t. reaction plane.
Thank you for your attentions!